If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-252x+532=0
a = 9; b = -252; c = +532;
Δ = b2-4ac
Δ = -2522-4·9·532
Δ = 44352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44352}=\sqrt{576*77}=\sqrt{576}*\sqrt{77}=24\sqrt{77}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-24\sqrt{77}}{2*9}=\frac{252-24\sqrt{77}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+24\sqrt{77}}{2*9}=\frac{252+24\sqrt{77}}{18} $
| 10=-29+-r | | -11-5p=10 | | g/3+9=7 | | 7-3p=12 | | j-4.2/3=1.8 | | 2(u+2)=12 | | f/3-29=-21 | | 12r-6=138 | | z/4-14.84=17.85 | | 13.69=3.6x | | 4(t+19)=4 | | 6(t+75)=-48 | | c+11/4=7 | | -52=t/5-57 | | r/7-18=-11 | | g-62/7=3 | | 5x-9=x+14 | | (3x-1)=(x-9) | | x/3.7=3.7/3.6 | | g/4=2.3 | | w/8-28=31 | | -4x-5=-18 | | x2+x6=-100 | | 62=7p-20 | | (x-2)(1.17)=0 | | -8(r-95)=8 | | 7Iy-5I=14 | | g/5-10=-5 | | u/4+-43=-45 | | 3s=65 | | 8=m-64/4 | | h+7/3=8 |